
２０１８阪大文系数学　解答速報

A 関数 f(t) = (sin t¡ cos t) sin 2tを考える．

Ñ x = sin t¡ cos tとおくとき，f(t)を xを用いて表せ．

Ò tが 0 · t · ¼の範囲を動くとき，f(t)の最大値と最小値を求めよ． （配点率 30%）
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B 1個のさいころを 3回投げる試行において，1回目に出る目を a，2回目に出る目を b，3回目に出る

目を cとする．

Ñ
Z c

a
(x¡ a)(x¡ b) dx = 0である確率を求めよ．

Ò a，bが 2以上かつ 2 loga b¡ 2 loga c+ logb c = 1である確率を求めよ．

（配点率 35%）
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　　 (c¡ a)2(a¡ 3b+ 2c) = 0

　‘ a = cのとき，(a; c)の組は 6組あり，そ

れぞれに対して bが 6通りあるので，6 ¢6 = 36通り

　’ a¡ 3b+ 2c = 0のとき，3b = a+ 2c

　 b = 1のとき a+ 2c = 3で，(a; c) = (1; 1)

　 b = 2のとき a+ 2c = 6で，(a; c) = (2; 2);

(4; 1)

　 b = 3のとき a+ 2c = 9で，(a; c) = (1; 4);

(3; 3); (5; 2)

　 b = 4のとき a+ 2c = 12で，(a; c) = (2; 5);

(4; 4); (6; 3)

　 b = 5のとき a+ 2c = 15で，(a; c) = (3; 6);

(5; 5)

　 b = 6のとき a+ 2c = 18で，(a; c) = (6; 6)

　下線を施した (a; c) の組は a = c で，すでに

‘で数えたので，これらを除いて 6通り

　よって，求める確率は 36 + 6
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Ò 2 loga b¡ 2 loga c+ logb c = 1

　　 2 loga b¡ 2 loga c+
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= 1

　　 2(loga b)2 ¡ 2(loga b)(loga c)

　　　　　　　　　　　　　¡ loga b+loga c = 0

　ここで，見やすさのため，loga b = x，loga c = y

とおく．

　　 2x2 ¡ 2xy¡ x+ y = 0

　　 x(2x¡ 1)¡ y(2x¡ 1) = 0

　　 (x¡ y)(2x¡ 1) = 0

　‘ x = yのとき

　　 loga b = loga c

　　 b = c

　 (b; c) = (2; 2); (3; 3); (4; 4); (5; 5); (6; 6)

の 5組であり，それぞれに対して aが 5通り（2 »

6）あるので，5 ¢ 5 = 25通り

　’ x = 1
2
のとき

　　 loga b =
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　　 2 loga b = 1

　　 loga b2 = loga a

　　 b2 = a

　 a ¸ 2，b ¸ 2より，これを満たす (a; b)の組は

(a; b) = (4; 2)の 1通り

　ただし，(a; b; c) = (4; 2; 2) は‘ ですでに

数えたので，これを除いて c が 1，3，4，5，6 の 5

通りあるので，1 ¢ 5 = 5通り

　‘，’より求める確率は 25 + 5
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C 座標空間に 6点

A(0; 0; 1);B(1; 0; 0);C(0; 1; 0);D(¡1; 0; 0);E(0;¡1; 0);F(0; 0;¡1)

を頂点とする正八面体 ABCDEF がある．s，t を 0 < s < 1，0 < t < 1 を満たす実数とする．線分

AB，ACをそれぞれ 1¡ s : sに内分する点を P，Qとし，線分 FD，FEをそれぞれ 1¡ t : tに内分す



る点を R，Sとする．

Ñ 4点 P，Q，R，Sが同一平面上にあることを示せ．

Ò 線分 PQの中点を Lとし，線分 RSの中点をMとする．s，tが 0 < s < 1，0 < t < 1の範囲を

動くとき，線分 LMの長さの最小値mを求めよ．

Ó 正八面体 ABCDEFの 4点 P，Q，R，Sを通る平面による切り口の面積をXとする．線分 LM

の長さがÒの値mをとるとき，Xを最大とするような s，tの値と，そのときのXの値を求

めよ． （配点率 35%）

a

Ñ
　AP : PB = AQ : QC = (1¡ s) : sであるから，

PQ Í BC

　 FR : RD = FS : SE = (1¡ t) : tであるから，

SR Í ED

　四角形 BCDEは正方形で，BC Í EDであるから，

PQ Í SR

　平行な 2直線は同一平面上を通るので，4点 P，Q，

R，Sは同一平面上にある（証明終）．
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小となる．0 < s < 1，0 < t < 1のとき s+ t = 2
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を満たす s，tは存在する．
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Ó 4 点 P，Q，R，S を通る平面と線分 EB，DC

との交点をそれぞれ T，Uとすると，切り口は次の



ような六角形となる．

　 PQ Í TU Í SR Í BCであり，s+ t = 2
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となり，LMと PQ，SRは直交する．
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このとき，s+ t = 2
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より，s = t = 1

3

【講評】

A 三角関数・微分（標準）

標準的な出題である．確実に得点したい．

B 確率・積分・対数（標準）

融合問題ではあるが，確率の考え方に難しい点はない．Ñでは，積分区間だけを見て a = cしか考

えないと，他の場合を落としてしまう．Òは対数の計算法則を利用してうまく処理したい．

C ベクトル・2次関数（やや難）

理系との共通問題で，レベルはやや難．計算量も多く，手際よくこなさなければならない一方で，初等

幾何の力も同時に問われている．

　　全体として，昨年よりも難化した．


